

Glow loss DCGLOW

Behälter Nr.				1	2	3
Masse der ungeglühten Probe n	it Behälter	m _d + m _B	g	134.09	134.55	133.06
Masse der geglühten Probe mit	Behälter	m _{gl} +m _B	g	131.49	132.16	130.43
Masse des Behälter		m _B	g	72.18	73.04	71.97
Massenverlust (m _d + m _B) - (m _{gl} + i	n _B)	$\triangle \mathbf{m}_{gl}$	g	2.60	2.39	2.63
Trockenmasse des Bodens vor $(m_d + m_{\theta}) - m_{\theta}$	dem Glühen	m _d	g	61.91	61.51	61.09
Glühverlust $V_{gl} = \frac{\triangle m_{gl}}{m_{dl}}$		V_{gl}	1	0.042	0.039	0.043
Glühverlust: Mittelwert		V _{gl}	1		0.041	

- Glow loss acc. to DIN 18 128
- Determination of the mass loss and glow loss
- Output of all test data in a table

Lime content DCLIME

Trockenmasse der Probe	m _d	g	0.75
Temperatur	Т	Grad	21.90
absoluter Luftdruck	P _{abs}	kPa	102.50
Gasvolumen für Calcit-Anteil	V' _G	cm ³	42.00
Gasvolumen	V _G	cm ³	82.30
Volumen des Gases	V ₀	cm ³	76.78
Masse Karbonatanteil	m _{Ca}	g	0.345
Kalkgehalt	$V_{Ca} = \frac{m_{Ca}}{m_d}$		0.460
Volumen des CO ₂ -Gases	V ₀	cm ³	39.18
Masse Calcitanteil	m' _{Ca}	g	0.176
Calcitanteil	$V_{Ca}^{i} = \frac{m_{Ca}^{i}}{m_{d}}$		0.235
Dolomitanteil	V"= V _{Ca} - V' _{Ca}		0.225

- Lime content acc. to DIN 18 129
- Determination of carbon portion and lime content
- Optionally calcite portion and dolomite portion
- Output of all test data in a table